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We study the impact of additive Gaussian noise and weak periodic forcing on the dynamics of a scale-free
network of bistable overdamped oscillators. The periodic forcing is introduced to a single oscillator and
therefore acts as a pacemaker trying to impose its thythm on the whole ensemble. We show that an interme-
diate intensity of temporally and spatially uncorrelated noise is able to optimally assist the pacemaker in
achieving this goal, thus providing evidence for stochastic resonance on weakly paced scale-free networks.
Because of the inherent degree inhomogeneity of individual oscillators forming the scale-free network, the
placement of the pacemaker within the network is thereby crucial. As two extremes, we consider separately the
introduction of the pacemaker to the oscillator with the highest degree and to one of the oscillators having the
lowest degree. In both cases the coupling strength plays a crucial role, since it determines to what extent the
whole network will follow the pacemaker on the expense of a weaker correlation between the pacemaker and
the units that are directly linked with the paced oscillator. Higher coupling strengths facilitate the global
outreach of the pacemaker, but require higher noise intensities for the optimal response. In contrast, lower
coupling strengths and comparatively low noise intensities localize the optimal response to immediate neigh-
bors of the paced oscillator. If the pacemaker is introduced to the main hub, the transition between the locally
and globally optimal responses is characterized by a double resonance that postulates the existence of an
optimal coupling strength for the transmission of weak rhythmic activity across scale-free networks. We
corroborate the importance of the inhomogeneous structure of scale-free networks by additionally considering
regular networks of oscillators with different degrees of coupling.
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I. INTRODUCTION

Stochastic resonance made its debut in science as a pos-
sible mechanism for the recurring occurrence of ice ages, and
has since left its mark in an unprecedented number of differ-
ent fields of research [1]. Still, however, the number of re-
search works devoted to this fascinating phenomenon in-
creases rapidly. Most commonly, stochastic resonance refers
to the phenomenon when an appropriate intensity of noise
evokes the best correlation between a weak periodic stimulus
and the response of a nonlinear system. The fact that noise
can constructively affect the functioning of any type of sys-
tem contradicts intuitive reasoning, and indeed some form of
nonlinearity is essential for the latter goal to be achieved [2].
It is noteworthy that closely related to the phenomenon of
stochastic resonance is also the so-called coherence reso-
nance [3], where noise alone suffices to induce a coherent
response of the system. Although studies on stochastic reso-
nance and other possible constructive effects of noise were
initially focused mainly on single-unit systems, the scope
shifted rather quickly to coupled arrays [4], where it has been
discovered that the spatiality may additionally broaden the
scope of stochastic [5,6] and coherence [7] resonance. Also,
in this respect, two-dimensional media received substantial
attention in the past [8], and recent advances have been com-
prehensively reviewed in [9].

In recent years, parallel with the expanding body of lit-
erature on the effects of noise on isolated and spatially ex-
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tended nonlinear dynamical systems, the subject became in-
creasingly imbued with the field of complex networks [10].
More precisely, the initially dominating nearest-neighbor in-
teractions were replaced by more complex topologies such as
small-world [11] and scale-free [12] networks. Rightfully so,
one may argue, as such networks appear to be excellent for
modeling interactions amongst units of complex systems,
whereby examples include social networks [13], scientific-
collaboration networks [14], food webs [15], computer net-
works [16], and neural networks [17]. Both stochastic [18]
and coherence [19] resonance phenomena have already been
studied in networks with small-world topology, and, in gen-
eral, it has been reported that the introduction of shortcut
links between randomly chosen units may increase the order
of the dynamics, whereby the ordering effect depends largely
on the coupling strength and the fraction of rewired links.
Moreover, pattern formation and spatial order of spiral waves
in media with small-world connections have also been stud-
ied [20], as were regularization effects of complex topologies
and their ability to suppress spatiotemporal chaos [21] or
induce bursting oscillations [22]. The idea of stochastic reso-
nance has also been applied to opinion formation models
[23], where the role of small-world topology, combined with
external periodic modulation representing a so-called “fash-
ion wave,” has been studied. Somewhat more closely related
to the subject of the present work, recently an interesting
study about the amplification of weak signals in scale-free
networks of bistable oscillators has been published [24], and
slightly earlier insightful findings regarding the synchroniza-
tion on complex networks have been presented [25]. Directly
linked with the current paper are two recent studies elaborat-
ing on the stochastic resonance phenomenon in coupled
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threshold elements [26] and the Ising model [27] on the
Barabdsi-Albert network [12]. Our goal at present is to ex-
tend the subject by studying the stochastic resonance phe-
nomenon on scale-free networks in the presence of localized
weak rhythmic activity only.

We consider as the model the Barabdsi-Albert [12] scale-
free network generated via the celebrated mechanism of
growth and preferential attachment and populate it with
bistable overdamped oscillators of which only a single one is
subjected to subthreshold periodic forcing. The locally intro-
duced periodic forcing thus acts as a pacemaker on the whole
network. Pacemakers are important units of larger systems
that dictate to their near and distant neighbors the operating
rhythm or pace, and so guide the functioning of the whole
ensemble. Most prominent systems with pacemakers, which,
however, do not necessarily obey the principles of bistable
dynamics or incorporate features characteristic of scale-free
networks, are those from real life and include the human
heart [28] and arteries and arterioles [29], as well as larger
cells like eggs [30]. In accordance with their importance,
several studies were already devoted to studying pacemaker
impacts on excitable systems [31] and networks with small-
world topology [32], as well as on propagation and refraction
of chemical waves [33]. Presently, the introduction of a pace-
maker serves to identify crucial influences of the scale-free
topology on the phenomenon of stochastic resonance. In par-
ticular, due to the inherent degree inhomogeneity of indi-
vidual oscillators forming the scale-free network, the place-
ment of the pacemaker within the network is crucial; i.e.,
differences in the system’s response can be expected if the
pacemaker is introduced to a unit with a higher or lower
degree. To address this, we consider as two extremes the
introduction of the pacemaker to the oscillator with the high-
est degree (main hub) and to one of the oscillators having the
lowest degree. We find that, irrespective of which options is
chosen, the coupling strength plays a crucial role since it
determines both quantitative and qualitative aspects of the
reported stochastic resonance. More precisely, while higher
coupling strengths ensure that the outreach of the pacemaker
extends across the whole network, thus warranting a globally
optimal response of the system, lower coupling strengths lo-
calize the optimal response to immediate neighbors of the
directly paced oscillator. However, while the locally optimal
response requires fairly low noise intensities, the globally
optimal response relies on a substantially higher stochastic
component. If the main hub hosts the pacemaker the latter
fact results in a doubly resonant response as the noise inten-
sity increases, whereby the first peak occurs when only the
immediate neighbors of the directly paced oscillator are op-
timally correlated with the pacemaker, and the second peak
occurs when the whole network is resonantly fine tuned. This
doubly resonant response is virtually absent when the pace-
maker is introduced to an oscillator with the lowest degree
within the network since its immediate neighborhood is too
small for the observation of a well-expressed locally optimal
response. Finally, we show that the double-resonant response
results in the existence of an optimal coupling strength for
the noise-induced transmission of weak rhythmic activity
across a scale-free network; in particular by warranting the
best compromise between the locally and globally optimal
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response. Findings obtained on scale-free networks are con-
trasted with results obtained by using homogeneous regular
networks of bistable overdamped oscillators. We find that on
such networks the locally optimal response is absent, or at
least cannot be distinguished from the globally optimal re-
sponse irrespective of the degree of coupled oscillators and
the coupling strength, which corroborates the importance of
the highly inhomogeneous structure of the scale-free network
and its unique impact on the phenomenon of stochastic reso-
nance.

The remainder of this paper is structured as follows. In
Sec. IT we introduce the model and other mathematical meth-
ods presently in use. Results are presented in Sec. III, and in
the last section we summarize our findings.

II. MATHEMATICAL MODEL AND SETUP

The model to be used presently consists of noisy bistable
overdamped oscillators, governed by Langevin equations of
the form

dx:
% =X _xis +2 &;;(x;— x;) + \’%é:i(f), (1)
J

where g;; is the coupling strength between units i and j, and
2D is the variance of the Gaussian noise with zero mean and
autocorrelation (&(t)§(t'))=08;;0(t—¢"). The dynamics of
each oscillator is governed by two symmetric stable steady
states centered around *1 that correspond to the minima of
the pertaining potential energy function V(x;)=-x7/2+x/4.
Equation (1) arguably provides a paradigmatic setup for dif-
ferent scenarios of stochastic resonance, either via the classic
setup, or via variations of system size [34] or diversity [35],
hence implying that a fine tuning of D might optimize the
response, i.e., switching between the two steady states, of the
model in accordance with the frequency of a subthreshold
periodic forcing.

To explore the possibility of stochastic resonance, we
presently introduce a subthreshold pacemaker of the form
f(t)=A cos(wr) to a single bistable oscillator i=r that re-
mains exposed to the periodic forcing during the whole
simulation period. Throughout this study we use A=0.3 and
w=1/300, which warrant that in the absence of noise (D
=0) the pacemaker is subthreshold, meaning it cannot by
itself induce transitions between the two stable steady states;
not by the oscillator which is directly exposed and not by any
other constitutive unit of the network. Instead, the bistable
oscillator directly perturbed by the pacemaker (as well as
those oscillators directly linked to it, but to a much lesser
extent depending on the coupling strength) exhibits small-
amplitude oscillations around the minimum of its potential
with the frequency w.

As the underlying interaction network we use the scale-
free network generated via growth and preferential attach-
ment as proposed by Barabdsi and Albert [12], comprising
N=200 vertices. Each vertex corresponds to one noise-
driven overdamped bistable oscillator. If oscillators i and j
are connected then &;;=¢;,=¢, but otherwise ¢;=¢;;=0 and

=
£;=0. Using the notation of [12], we start with my=2 con-
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FIG. 1. Examples of regular network topologies considered with
periodic boundary conditions. For clarity regarding the degree of
each oscillator only 25 vertices are displayed in each panel. (a)
Each vertex is connected to its k;=4 nearest neighbors. (b) Each
vertex is connected to its k;=10 nearest neighbors. The extension to
k;=36, as used in Sec. III, is straightforward.

nected vertices, and subsequently every new vertex is at-
tached to m=2 old vertices already present in the network,
whereby the probability II that a new vertex will be con-
nected to vertex i depends on its degree k; in accordance with
I1=k;/ 2 k;. This growth and preferential attachment scheme
yields a network with an average degree k,,=N"'2k; equal-
ing 4, and a power-law degree distribution with the slope of
the line equaling —2.9 on a double-logarithmic graph. Due to
the large degree inhomogeneity of individual oscillators
forming such a scale-free network, the placement of the
pacemaker within the network is of crucial importance, and,
as we will show below, may significantly influence the phe-
nomenon of stochastic resonance. In order to address this, we
consider the introduction of the pacemaker to the oscillator
with the highest degree [r=i(ky,)] and to one of the oscil-
lators having the lowest degree [r=i(k,;,)]. The lowest de-
gree is always k.,;,=2, whereas the highest degree varies for
different generations of the network (note that the growth
and preferential attachment procedure has inherently random
components) and, for the currently considered network size
comprising N=200 vertices, may occupy any value from the
interval k., €[20,70], with the most probable value =35
(based on the statistics of 10* generated networks). Thus, in
order to warrant statistical accuracy [especially if r=i(ky,) ]
all results presented below were obtained as averages over
100 different realizations of the scale-free network. Impor-
tantly, although the dispersion of k,, is fairly large by N
=200, the usage of much larger networks (with a somewhat
smaller dispersion of k,,,,) would presently be inefficient be-
cause the subthreshold pacemaker could not influence a
larger ensemble even in optimal conditions, and, moreover,
the computer resources needed for an accurate simulation of
such large ensembles would quickly exceed our options.

After presenting results obtained on scale-free networks,
we also use, as the underlying interaction structure amongst
bistable oscillators, homogeneous regular networks with dif-
ferent degrees, as exemplified in Fig. 1. More precisely, we
consider regular ring networks with periodic boundary con-
ditions comprising N=200 oscillators, each having degree
k;=k,,=4 [as shown in Fig. 1(a)] or k;=k,,=36 [for clarity
Fig. 1(b) features a network with k;=10 just to exemplify the
extension toward networks with larger degrees]. We thus
contrast results obtained on scale-free networks with those
obtained on regular networks having the same average de-
gree k,,=4, and also with regular networks incorporating os-
cillators with k; roughly the same as is the average maximal
degree (=35) that is encountered by the above-described
scale-free networks.
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For each set of the two main parameters € and D the
temporal output of each unit i is recorded for 7=1000 peri-
ods of the pacemaker (after 100 periods were discarded as
transients). Notably, to eliminate the effect of intrawell mo-
tion only every 20th point of the temporal series of x; result-
ing from numerical integration is recorded. Finally, the cor-
relation of each series with the frequency of the pacemaker
w=2m/t, is computed via the Fourier coefficients Q;
=R*+W? according to [36]

2 tpT

R;= ﬁf x; sin(wt)dt, (2)
P 0
2 T

W, = ﬁf x; cos(wr)dr. (3)
14 0

Since the Fourier coefficients are proportional to the square
of the spectral power amplification, we presently use Q; as
the measure for stochastic resonance. To evaluate the re-
sponse of the whole network by different D, the average of
Q, over all oscillators, defined as S=N‘IEQ,<, will be used.

III. RESULTS

In what follows, we will systematically analyze effects of
different € and D on the noise-induced temporal dynamics of
the scale-free network of bistable oscillators. Throughout this
section the results for the two considered pacemaker place-
ments within the network, r=i(ky;,) and r=i(ky,y), will be
shown and commented on in a parallel fashion for the pur-
pose of better comparison. After presenting results for the
scale-free networks, we will show results obtained on regular
networks in order to strengthen the importance of degree
inhomogeneity for the phenomenon of stochastic resonance.

We start by examining the color-contour plots of Q; in
dependence on D and i for different € and r that are pre-
sented in Fig. 2. For the purpose of interpreting the presented
results, it is important to distinguish between the so-called
globally optimal response and the locally optimal response
of the network. The globally optimal response of the network
is obtained when S exhibits the overall maximum value
brought about among all considered D, which directly im-
plies that then all oscillators must contribute optimally to S
via their individual Q;. Instances of the globally optimal re-
sponse are marked with yellow lines in all panels of Fig. 2,
thus confirming the possibility of stochastic resonance within
the presently considered model, irrespective of € and r. Con-
versely to the globally optimal response, the locally optimal
response is characterized by a (typically small) local maxi-
mum of S that is obtained by a smaller D, whereby only
some small fraction of oscillators contribute significantly to
S via their Q;, whilst others remain largely uncorrelated with
the pacemaker. The locally optimal response can be observed
only for r=i(k,,) and small & (up to £=0.08), as exempli-
fied by the red rectangle in the uppermost right panel of Fig.
2. It can be inferred that then the resonant response of the
system is constrained to only roughly 30-40 oscillators that
are directly connected to the one hosting the pacemaker.
Note that the most likely maximal degree for the presently
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FIG. 2. (Color online) Color-coded Q; in dependence on D and
i for different €. Left column features results for r=i(ky;,) and right
for r=i(ky,y). Red rectangle in the uppermost right panel marks
the area of the locally optimal response. Yellow lines denote the
globally optimal response. The color profile in all panels is loga-
rithmic, white depicting minimal and black maximal values of
Q;. Minimal Q; in all panels is 0.001, whereas the maximal values
from top to bottom for the left and right columns are
0.64,0.59,0.51,0.34,0.22 and 0.42,0.24,0.14,0.08,0.06, respectively.
The consecutive numbering of vertices constituting the scale-free
network is ordered in accordance with the area under each Q; vs D
curve. Since a larger area indicates a better-correlated response, the
oscillator hosting the pacemaker always has i=1 whereas the oscil-
lator that is most badly correlated with the pacemaker has i=200.

considered size of the scale-free network (=35) corresponds
rather accurately with the number of oscillators constituting
the locally optimal response. Remnants of this feature
uniquely present in case r=i(ky,,) (right column of Fig. 2)
can be observed also for higher D and larger € since there
exists a clearly noticeable drop in magnitude of Q; for all i
>40. If r=i(k,,;,) (left column of Fig. 2), however, the lo-
cally optimal response is practically negligible, or at least
cannot be appreciated within the graphical presentation of
Fig. 2. It is also worth noting that, as a common feature
independent of r, larger € facilitates the outreach of the pace-
maker across all coupled units (note that the darker shades
extend increasingly toward higher i as e increases), and,
moreover, increasingly higher D are required for the optimal
response. Accordingly, increasing e also decrease the peak
values of Q;, as can be inferred from the caption of Fig. 2.
In order to study the above-outlined details of results pre-
sented in Fig. 2 more precisely, we continue by examining
characteristic cross sections of the color maps as well as S in
dependence on D. We start by showing Q; in dependence on
D for different € for the oscillator i=r that is under the direct
influence of the pacemaker. The upper panel of Fig. 3 fea-
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FIG. 3. Q; in dependence on D for the oscillator i=r that hosts
the pacemaker. Upper panel shows results for r=i(k,,;,) and lower
for r=i(ky,,) by various &. Lines are solely guides to the eye.

tures results for r=i(k,,;,) and the lower panel for r=i(k,y)-
The double-resonant response can be observed at a glance in
the lower panel, where the locally optimal response (com-
prising foremost the pacemaker-driven oscillator and its di-
rect neighbors) generates the first clear maximum of Q; for
substantially lower D than that subsequently giving the sec-
ond maximum of Q; representing the globally optimal re-
sponse as the noise intensity increases further. However, as
the coupling strength increases the locally optimal response
vanishes quickly, which suggests that larger & increasingly
blur the details of the scale-free network structure, making
the whole system essentially behave more and more like a
single oscillator. Put differently, only small enough & allow
for the most efficient exploitation of the scale-free structure
and its power-law degree distribution. Similar observations
were made already when the stochastic resonance on small-
world networks was studied [17], where it has also been
argued that, in order for the complex network topology to
take effect, an intermediate coupling strength is required. Im-
portantly, however, even if the pacemaker is introduced to an
oscillator with the lowest degree, the transition from the lo-
cally to the globally optimal response can be inferred, only
that it does not result in a double resonance as D increases,
but manifests as a smooth, yet rather abrupt, transition of the
overall peak value of Q; toward higher D as ¢ increases (see
in particular the curves for £€=0.08 and 0.16 in the upper
panel of Fig. 3). It is also noteworthy that the overall maxi-
mal peak of Q; at smaller ¢ is larger if r=i(ky;,) than if r
=i(kyqa). This must be attributed to the fact that when r
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FIG. 4. Q; in dependence on i for the value of D warranting the
globally optimal response of the network (see yellow line in Fig. 2)
for a given &. Upper panel shows results for r=i(k,,) and lower for
r=i(kynax)- Note that in both cases the vertical axis has logarithmic
scale. Lines are solely guides to the eye.

=i(ky;,) the local neighborhood of the paced unit (only two
directly linked oscillators) is much smaller, and thus the in-
fluence of the pacemaker is much more weakly dissipated
than if r=i(k,,). Note that in the latter case up to 70 oscil-
lators may be directly linked to the paced hub, essentially
distorting its response.

Next, we show Q; in dependence on i for the value of D
warranting the globally optimal response of the network by a
given €. The lowermost right panel of Fig. 2 features a yel-
low line at the appropriate D=0.37 to exemplify an instance
of the globally optimal response. We note, however, that D
=0.37 is characteristic only for e=0.32, whereas the globally
optimal response shifts toward smaller D as € decreases, as
can be inferred from Fig. 2, but also from results presented in
Fig. 3 as well as Fig. 5 below. As in Fig. 3, the upper panel
of Fig. 4 features results for r=i(k,;,) and the lower for r
=i(kpay). For r=i(ky;,) the trend is fairly straightforward in
that larger & improves the outreach of the pacemaker across
all coupled units at the expense of an ever worse response of
the directly paced oscillator. This obeys the simple and well-
established reasoning that larger & better dissipate the influ-
ence of the pacemaker, while simultaneously the directly
perturbed oscillator is more strongly influenced by its
surroundings and therefore its response becomes increas-
ingly distorted. On the other hand, the curves depicted in the
lower panel of Fig. 4 are somewhat more difficult to inter-
pret. First, it is interesting to notice that the top 30—40 oscil-
lators that are optimally correlated with the pacemaker be-
have exactly opposite in dependence on & from the rest of the
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FIG. 5. S in dependence on D. Upper panel shows results for
r=i(ky;,) and lower for r=i(kp,,) by various e. Lines are solely
guides to the eye.

coupled units. Namely, as € increases, their correlation with
the pacemaker decreases whilst the majority gradually im-
prove their response. This, however, is again in accordance
with the observation that only small & allow for the occur-
rence of the locally optimal response, whereas larger & in-
creasingly blur the details of the scale-free network structure,
making the whole system essentially behave more and more
like a single unit. Remarkably, during this transition, as &
increases, there exists an optimal coupling strength which,
on one hand, still allows the exploitation of the scale-free
structure, but, on the other, also allows an efficient dissipa-
tion of the pacemaker-imposed rhythm to units that are not
direct neighbors of the main hub. Note that the curve for &
=0.08 seems to warrant the best compromise between the
locally optimal response (response of those units that are
directly connected to the pacemaker-driven unit) and the glo-
bal response of the whole network. Such rather subtle fea-
tures are absent in case r=i(k,,;,).

To support the existence of an optimal & in the case r
=i(ky,x) We consider S (as defined in Sec. IT) in dependence
on D for different &. Figure 5 shows the results for r
=i(kpin) (upper panel) and r=i(k,,,,) (lower panel). Indeed, if
the oscillator with the lowest connectivity is paced the opti-
mal response (maximal S) of the network shifts toward
higher D and improves as & increases. In particular, the in-
ability of the paced unit r=i(k,;,) to directly affect a large
number of distant oscillators is at larger € compensated by a
faster transmission of the pacemaker rhythm across the
whole array, which ultimately results in larger maximal S for
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FIG. 6. Q; in dependence on D for the oscillator i=r that hosts
the pacemaker on regular ring networks exemplified in Fig. 1. Up-
per panel shows results for k;=k,,=4 and lower for k;=k,,=36 for
various €. Lines are solely guides to the eye.

optimal D. On the other hand, if the paced oscillator is the
main hub of the network then £=0.08 warrants the largest
overall peak of S, thus confirming the existence of an optimal
¢ for the global response of a weakly paced scale-free net-
work under the influence of noise. Notably, this effect re-
sembles the phenomenon of array-enhanced stochastic reso-
nance reported in [5]. It is also noteworthy that the locally
optimal response in the case r=i(k,,y) is barely visible via S.
For the locally optimal response, lower e are preferred, and,
indeed, very small humps around D=0.01 can be inferred
only up to £=0.08. Nevertheless, the locally optimal re-
sponse should mainly be viewed as a prelude to the global
one, since the latter uniquely quantifies the pacemaker’s ef-
ficiency and the ability of a network structure to support it.

Lastly, we consider regular networks, as depicted in Fig.
1, in order to strengthen the importance of the inhomoge-
neous scale-free network structure. As noted in Sec. II, we
contrast the above results with those obtained on regular net-
works having k;=k,,=4, and also with those that incorporate
oscillators with k;=k,,=36, which is roughly the same as the
average maximal degree (=35) encountered in the scale-free
networks used above.

Figure 6 shows Q; in dependence on D for different & for
the oscillator i=r that is under the direct influence of the
pacemaker. Note that, since regular rings with periodic
boundary conditions are used, the particular placement of the
pacemaker within such networks is irrelevant (we used i=r
=1). The upper panel of Fig. 6 features results for k;=k,,
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=4 and the lower panel for k;=k,,=36. First, it is important
to note the similarities between results presented above in
Fig. 3 and results presented in Fig. 6. In the upper panels of
both figures the optimal D increases with increasing e, and
accordingly the peak values of Q; decrease. Similar common
features can be inferred also by comparing the lower panels
of Figs. 3 and 6, only that the locally optimal response is
absent in the case of the regular network. This indicates that
regular networks fail to produce the locally optimal response
as was reported above for the scale-free network if r
=i(ky,y). We argue that an increase in the degree of regular
networks has a similar impact as if & were to increase be-
cause the additional connections among distant oscillators
simply facilitate the outreach of the pacemaker across the
whole ensemble. Therefore, a qualitative change in the prop-
erties of the stochastic resonance phenomenon, possibility
similar as reported above for scale-free networks if r
=i(kyax), can thereby not be induced. We note that on scale-
free networks vertices directly connected to r=i(k,,) will
typically have a much smaller degree than the main hub
itself due to the strongly inhomogeneous degree distribution.
This fact implies that, once the pacemaker emitted signal
reaches the first neighbors of r=i(k,,,), the effective trans-
mission of the pacemaker rhythm toward more distant neigh-
bors deteriorates substantially, which leads to the existence
of the locally optimal response by small enough &. By regu-
lar networks with large k;, on the other hand, all first neigh-
bors of the paced oscillators have the same high degree, and
thus very effectively dissipate the dynamics further to their
neighbors (and this reasoning continues also for the third,
fourth, etc., neighbors), and hence the locally optimal re-
sponse is negligible even if € is small.

As the last result corroborating our reasoning specific to
results presented in Fig. 6, we show in Fig. 7 the quantity S
dependent on D by different £. Notably, many similar fea-
tures as reported above for scale-free networks (see Fig. 5)
can be observed. In particular, irrespective of the underlying
network structure larger e increase the optimal D as well as
the maximal S, as shown in the upper panels of Figs. 5 and 7.
The two lower panels of Figs. 5 and 7 also share the common
feature that the optimal D increases with increasing . How-
ever, unlike in Fig. 5, in the lower panel of Fig. 7 there does
not exist an optimal & by which S would be maximal, which
we attribute to the lack of features reported above for scale-
free networks when the pacemaker is introduced to the main
hub. Also, it can be noted that by k;=k,,=36 increasing ¢ fail
to enhance S markedly as the effective transmission of pace-
maker activity is already warranted by the strong intercon-
nectedness of individual oscillators. Our findings thus indi-
cate that the strongly inhomogeneous scale-free network
structure offers possibilities for optimizing the noise-
supported transmission of localized rhythmic activity that
cannot in this form be exploited effectively on regular net-
works, thus offering interesting insights into the stochastic
resonance phenomenon on locally paced complex networks.

IV. SUMMARY

We study the phenomenon of stochastic resonance on lo-
cally paced scale-free networks of bistable oscillators. We
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find that an appropriate intensity of noise is able to induce an
optimal correlation between the response of the network and
the locally imposed rhythm, as depicted in Fig. 5. However,
details of the reported stochastic resonance phenomenon de-
pend extensively on the coupling strength and the degree of
the oscillator hosting the pacemaker. If the pacemaker is in-
troduced to the main hub of the network we can observe a
so-called locally optimal response at small enough &, by
which only those oscillators that are directly linked with the
one hosting the pacemaker adjust their response in accor-
dance with the periodic forcing. This results in a double-
resonant response as D increases, and, even more impor-
tantly, postulates the existence of an optimal coupling
strength & giving the best noise-induced global response of a
scale-free network to a localized source of rhythmic activity.
It is noteworthy that a double-resonant response in the spec-

PHYSICAL REVIEW E 78, 036105 (2008)

tral power amplification has been reported already previously
in an uncoupled bistable system [37] and in the Ising model
on a scale-free network [27]. In the former case the double-
resonant response was attributed to subharmonic clocking,
whereas in the latter, which subsequently led also to the dis-
covery of a dynamical phase transition in the Ising model on
a scale-free network [38], the phenomenon was found to be
dependent on the selection of the order parameter, i.e., the
double-resonant response was observed only if the time-
dependent magnetization was used for the evaluation of the
spectral power amplification. At present, the optimal & al-
lows for an efficient dissipation of the pacemaker-imposed
rhythm to units that are not direct neighbors of the main hub,
but also is still low enough to allow the exploitation of the
scale-free structure, thereby sustaining also some portion of
the locally optimal response. On the other hand, if the pace-
maker is introduced to one of the oscillators with the lowest
connectivity, the small number of direct neighbors precludes
the observation of an isolated locally optimal response, and
consequently there does not exist an optimal & warranting the
best response in such a case. In fact, as the coupling in-
creases the network then simply acts more and more as a
single unit, and consequently the pacemaker becomes in-
creasingly more successful in imposing its rhythm on the
majority. Nevertheless, due to a much smaller neighborhood
of directly linked oscillators, the pacemaker-driven unit can
exhibit a better correlation with the pacemaker than if the
main hub is paced, as depicted in Fig. 3, although this fact is
mostly of secondary importance as it does not reflect the
overall response of the whole network. We additionally
strengthen the importance of degree inhomogeneity by
studying the phenomenon of stochastic resonance on regular
networks. While on the latter several features of the stochas-
tic resonance phenomenon are similar to those reported for
scale-free networks, regular networks do not seem to warrant
the observation of a locally optimal response irrespective of
the degree of the oscillators. Since pacemakers are integral
parts of several different organs and cell types, we hope our
study will find applicability in real-life-motivated problems
and foster the understanding of biological as well as artificial
processes that rely on an effective pacemaker for their proper
functioning.
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